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Abstract. In accordance with an idea in [8], in this paper we sketch a 
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1   Introduction 

Imagine that we claim that   
(i) the probability of the statement "a bird is able to fly " is 0.9, 
and compare such a claim with the following one  
(ii) the probability of the statement " Tweety is able to fly " is 0.9. 
Then, as emphasized by F.Bacchus in [1] and J.Y.Halpern in [2] the justifications of 
these probabilistic assignations looks to be very different. In fact,  (i) expresses a 
statistical information about the proportion of fliers among the set of birds. Such 
information, related to the class of birds, is statistical in nature. Instead it seem very 
hard to justify (ii) from a statistical point of view and this since (ii) one refer to a 
particular bird (Tweety) and not to a class of elements. As a matter of fact either 
Tweety is able to fly or not and the probabilistic valuation in (ii) is a degree of belief 
depending on the level of my knowledge about the capabilities of Tweety. In [8] it is 
proposed the idea that in such a case we can refer to the class of birds “similar” to 
Tweety. More precisely, the belief expressed in (ii) is based on the past experience 
about the percentage of birds similar to Tweety and able to fly. Obviously, the 
valuation of the similarity depends on the information on Tweety we have. So, both 
the  probabilistic assignments in (i) and in  (ii) are statistical in nature. 
 On the basis of such an idea, in [3] a method to design probabilistic expert systems 
was proposed. The crucial notion of similarity is defined in accordance with Leibniz’ 
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principle. Indeed, two individual are called “similar” provided that they share the 
same observable properties.  

In this paper we reformulate the approach sketched in [3] and we extend it in order 
to admit vague properties. In doing this, we adopt a new formalism which is very 
close to formal concept analysis (see [7],[16], [18]) and which is adequate for a 
suitable extension to the fuzzy framework. This leads also to consider the crucial 
notion of state [11], [21]. 

2.   Probabilistic valuations of the formulas in classical logic 

In this section we recall some basic notions of probabilistic logic. In the following we 
denote by F the set of formulas of a classical zero-order language. 

 
Definition 1. Let B = (B, ∨, ∧, −,0,1) be a Boolean algebra. A Boolean valuation of F 
(briefly B-valuation) is any map v: F→B satisfying the following properties, for any α 
and β: 
• v(α∨β) = v(α)∨ v(β), 
• v(α∧β) = v(α)∧v(β), 
• v(¬α) = 1−v(α) .   

 

 
If  B is ({0, 1}, ∨, ∧, −, 0, 1), then the B-valuation coincides with the usual truth 
assignment of the formulas in classical logic. Observe that a B-valuation is truth-
functional by definition, i.e. the truth value of a compound formula depends on the 
truth values of its compounds, unambiguously. A formula α is called tautology if v(α) 
= 1 for every B-valuation v and contradiction  if v(α) = 0 for every B-valuation v.  
Two formulas α and β are called logically equivalent if v(α) = v(β) for any v.  
 
Definition 2. A  probability valuation of F is any map µ: F → [0,1] such that:  
1. µ(α) = 1                                               for every tautology α,  
2. µ(α∨β) = µ(α) + µ(β)                           if α∧β is a contradiction, 
3. µ(α) = µ(β)                                           if α is logically equivalent to β . 

 

 
Let us observe that if µ is a probability valuation, then µ(α) = 0 for every contradiction 
α. Indeed, in such a case, since α is logically equivalent to α∨α and α∧α is a 
contradiction, by 2. and by 3., we have that µ(α) = µ(α∨α) = µ(α) + µ(α). This entails 
that µ(α) = 0. 

As it is well known, probability valuations are not truth-functional. Nevertheless, 
the truth-functionality can be obtained by means of the notion of B-valuation.  
 
Definition 3. A B-probability valuation of F is a structure (B, v, p) where 
• B is a Boolean algebra,  
• v: F→B is a B-valuation (truth-functional),  
• p: B → [0,1] is a finitely additive probability on B. 
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The notion of B-probability valuation and that one of probability valuation are strictly 
related as it is asserted in the following proposition (see [3]) . 
 
Proposition 4. Let (B, v, p) be a B-probability valuation and let us define µ:F→ [0,1] 
by setting µ(α)= p(v(α)) for every α∈F. Then µ is a probability valuation. Conversely, 
let µ: F→ [0,1] be any probability valuation in F. Then a Boolean algebra B and a B-
probability valuation (B, v, p) exist such that µ(α) = p(v(α)).  
 

Due to the Representation Theorem of Boolean algebras [2], [12], it is not 
restrictive to assume that B is an algebra of subsets of a set S. Moreover, we prefer 
identifying the subsets of a set with the related characteristic functions. So we refer to 
Boolean algebras as {0,1}S instead of  P(S) as we will see later on. 

3.   Formal contexts, statistical inferential bases and indiscernibility  

The first important step to design a probabilistic expert system is to create a database 
storing information about past cases we consider related to the actual one (see [3], 
[8]). The notion of formal context seems suitable to represent this kind of collected 
information. This concept is a basic notion of formal concept analysis [7], [18], which 
is usually used to identify patterns in data and which recognizes similarities between 
sets of objects based on their attributes. 

 
Definition 5. A formal context is a structure (Ob, AT, tr) where: 
• Ob  is a finite set whose elements we call objects, 
• AT is  a finite set whose elements we call attributes, 
• tr: Ob × AT →{0,1}  is a binary relation from Ob  to AT. 
 

Given an object o and an attribute α, tr(o,α) = 1 means that the object o possesses 
the attribute α while tr(o, α) = 0 means that o doesn’t satisfy α. Is easy to represent a 
formal context by a table, where the objects are the elements of the rows, the 
attributes are the elements of the columns and in all the cells of the table there are 0 or 
1. We consider as set of objects a set of “past cases” and we distinguish two types of 
attributes: we call observable the properties for which it is possible to discover 
directly whether they are satisfied or not by the examined case. Otherwise, a property 
is called non observable. As an example, an event that will happen in the future is a 
non observable property. Furthermore the past cases are classified according to 
observable properties; the “actual case”, i.e. the new examined case different from 
past cases, is considered “analogous” to a class of past cases if it satisfies their same 
observable properties.  

 
Definition 6. A (complete) statistical inferential basis is a structure SIB = (PC, AT, 
OBS, an, tr, w) such that   
• (PC, AT, tr) is a formal context,  
• OBS is a subset of AT, 
• an: PC→{0,1} is a map from PC to {0,1}, 
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• w: PC → ℕℕℕℕ is a function called weight function.  
 
We call the elements of PC past cases and the map tr: PC × AT →{0,1} information 
function. The set OBS is the subset of the observable attributes and the map an is 
regarded as the (characteristic function of the) set of past cases analogous to the actual 
one. The meaning of the number w(c) = n is that the past case c is the representative 
of n analogous cases. Then, we set the total weight of a statistical inferential basis SIB 
as  

w(SIB)= ∑{w(c)an(c) / c∈PC }.                                            

It corresponds to the number of the past cases analogous to the actual case represented 
globally by SIB. If w(SIB)≠0 then we say that the statistical inferential basis is 
consistent.  

We denote by F (by Fobs) the set of formulas of the propositional calculus whose 
set of propositional variables is AT (is OBS, respectively). As usual, the function tr 
can be extended to the whole set F of formulas by setting, for every formula α and β, 
• tr(c, α∧β) = min{tr(c, α),  tr(c, β)}, 
• tr(c, α∨β) = max{tr(c, α),  tr(c, β)}, 
• tr(c, ¬α) = 1− tr(c, α). 
In this way, any past case is associated by tr with a classical valuation of the formulas 
in F. 

In accordance with the basic notions of probabilistic logic, exposed in the previous 
section, now we provide some definitions of valuations associated to a statistical 
inferential basis SIB. 

Proposition 7. Every consistent statistical inferential basis SIB = (PC, AT, OBS, an, 
tr, w) defines a B-probability valuation (B, v, p) in F such that: 

•  B is the Boolean algebra ({0,1}PC, ∪, ∩, ∼, c∅, cPC ), 
• v(α): PC→{0,1} is (the characteristic function of) the set of  past cases satisfying 
α, i.e.   

v(α) (c)= tr(c, α) ,   

 
• p: B→[0,1] is the probability in B defined by setting, for any s∈{0,1}PC ,  

p(s) = ( ) ( ) ( ){ }
( )SIBw

PCc/cscancw∑ ∈  .  

  
 

In particular, we have that p(c) = p({c}) = ( ) ( )
( )SIBw

cancw . 
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As a consequence of Proposition 9 and Proposition 11 any statistical inferential 
basis SIB can be associated with a probability valuation µ of the formulas. So we 
have, for every formula α,  

Μ(α) = p(v(α)) = ( ) ( ) ( ){ }
( )SIBw

PCc/,ctrcancw∑ ∈α  .  

In other words, µ(α) represents the percentage of past cases (analogous to the actual 
case) in which α is true according to the stored dates.  
 
According to the main idea we refer, it is important to specify which relation we take 
into account in order to consider “analogous” two cases. In the following, we will 
introduce a formalism very close to Pawlak’ s one [14] and remembering Leibniz’s 
indiscernibility principle for which two individuals are indiscernible if they share the 
same properties. 

Definition 8. Let A be a subset of AT. Let ↔ be the operation corresponding to the 
equivalence in the classical zero-order language and e: PC×PC → {0,1} be a relation 
on PC defined by setting  

 e(c1, c2) = Inf α∈A  tr(c1, α) ↔ tr(c2, α). (1) 

If e(c1, c2) = 1 we call the two cases c1 and c2  A-indiscernible  and we write c1 ≅A c2.  
 

Let us observe that two cases are A-indiscernible if tr(c1, α) = tr(c2, α) for every α∈ A, 

i.e. if they satisfy the same properties in A. It is immediate that ≅A  is an equivalence 
relation in PC. Then, for every case c, we can consider the corresponding equivalence 

class [c]A  and, obviously, the quotient of PC modulo ≅A. 
 In particular, we are interested to identify the past cases satisfying the same 

observable properties of the actual case. Let us recall that by “actual case” we intend a 
case different from past cases in which the only available information is that 
expressed by the set Fobs in the language of “observable” properties. To our aim it is 
important to give an adequate definition of actual case.  

Definition 9. We call actual case any map ac: OBS→{0,1} from the set of the 
observable OBS to {0,1}. We call piece of information about ac any subset of ac, i.e. 
any partial map T: OBS→{0,1} such that ac is an extension of T. We say that T is 
complete if  T = ac.   

 
So, we identify the actual case with the “complete information” about its observable 
properties. As we will see in the next sections, we can collect pieces of information 
about ac by a query process. In the following we denote the actual case by ac or by the 
family {(α, ac(α)}α∈OBS, indifferently. We extend the information function tr to the 
actual case by setting tr(ac, α) = ac(α) for every α ∈OBS and then to the whole set 
Fobs of observable formulas in the usual way. We also extend the relation e by 
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considering pieces of information on the actual case ac. Indeed, given a piece of 
information T, we set 

eT(c, , ac) = Inf α∈Dom(T)  tr(c, α) ↔ tr(ac, α) .  

If eT(c, ac) = 1, then c is a past case which is OBS–indiscernible from the actual case 
ac given the information T. If T is complete then we write e(c, ac) instead of eT(c, ac).  

Definition 10. Let SIB be a statistical inferential basis. We say that a piece of 
information T is consistent with SIB if there exists a past case c∈PC such that an(c)≠0 
and eT(c, ac)≠0. 

Let us observe that if T is consistent with SIB there is a past case c analogous to the 
actual case according to the available information T, i.e. a past case c exists such that 
it satisfies the same observable property of ac with respect to T.   
 
 Given a statistical inferential basis SIB = (PC, AT, OBS, an, tr, w), representing 
the basic information, and a piece of information on the actual case T = {(α1, 
T(α1)),..., (αn, T(αn))}, we are able to obtain a new statistical inferential basis SIB(T) 
from SIB.  

 
Definition 11. Let SIB be a statistical inferential basis and T a piece of information on 
ac consistent with SIB. We call statistical inferential basis induced by T in SIB the 
structure: 

SIB(T) = (PC, AT, OBS, anT, tr, w), 
where anT is defined by setting anT(c) = an(c) eT(c, ac). 
 

In accordance with Proposition 11 and also considering the B-probability valuation 
(B, v, p) associated to SIB, the statistical inferential basis S(T) defines a B-probability 
valuation (B, vT, pT)  where:  
• B is the Boolean algebra ({0,1}PC, ∪, ∩, ∼, c∅, cPC),  
• vT: F→ B  is a B-valuation of the formulas in F defined by  

vT(α)(c) = anT(c)v(α)(c) = an(c)eT(c,ac)tr(c,α) ,  

i.e. vT(α) is (the characteristic function of) the set of past cases which are indiscernible 
from ac (given the available information T) and verifying α,  
• pT: B →[0,1] is the probability on B defined by setting, for any s∈ {0,1}PC ,  

( ) ( ) ( ) ( ){ }
( )( )TSIBw

PCc/cscancw
sp T

T
∑ ∈

=  . (1) 

As usual, we have a probability valuation µT of the formulas defined, for every 
formula α,  as  µT(α) = pT(vT(α)), i.e. 

( ) ( ) ( ) ( ){ }
( )( )TSIBw

PCc/,ctrcancw T
T

∑ ∈
=

α
αµ  (2) 
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The number µT(α) is the percentage of the past cases verifying α among the cases in S 
considered analogous to ac taking into account the available information T.  
 

Obviously, the probability pT, defined in (1), can be regarded as the conditioned 
probability p(_/mT), where mT denotes the set of past cases indiscernible from ac given 
T. Indeed, for any s∈ {0,1}PC  and by 0, we have  

pT (s)= 
( ) ( ) ( ){ }

( ) ( ){ }∑
∑

∈
∈
PCc/cancw

PCc/cancscw

T

T
= 

        = 
( ) ( ) ( ){ }

( )Sw

PCc/cancscw T∑ ∈ ( )
( ) ( ){ }∑ ∈ PCc/cancw

Sw

T

=  

        = 
( ) ( ) ( ) ( ){ }

( )Sw

PCcacecancscw cT∑ ∈/, ( )
( ) ( ) ( ){ }∑ ∈ PCcacecancw

Sw

cT /,
=  

        = 
( ) ( ) ( ) ( ){ }

( )Sw

PCc/cmcancscw T∑ ∈ ( )
( ) ( ) ( ){ }∑ ∈ PCc/cmcancw

Sw

T

=  

              = 
( )

( )T

T

mp

msp ∩
 =  p(s /mT). 

Consequently, for every formula α, also the probability valuation µT can be regarded 
as the conditioned probability µT (α) = µ(α / mT).   

4.  A step-by-step Inferential Process 

In this section we describe how the step-by-step inferential process works. We 
imagine an expert system whose inferential engine contains an initial  statistical 
inferential basis SIB, i.e. a statistical inferential basis such that an is constantly equal 
to 1. This means that initially and in absence of information on ac we assume that all 
the past cases are analogous to the actual case. Successively, we can obtain 
information on ac by a sequence α1 , ... αn of queries about observable properties. So, 
we set T0 = ∅ and, given a new query αi, we set Ti = Ti-1∪{( ai,λi)} where λi = 1 if the 
answer is positive (the actual case verifies αi) and λi = 0 otherwise. As a consequence, 
we obtain a sequence of corresponding inferential statistical basis {SIB(Ti)}i=1,…,n. At 
every step we can evaluate the probability that ac satisfies β given the available 
information. Obviously, we are interested to a non observable property β. 
 
Definition 12. Let SIB be an initial statistical inferential basis and β  be a formula in 
F. Let Tn be the available information on ac obtained by a sequence of n queries. Then 
we call probability that ac satisfies β  given the information Tn, the probability of β in 
the statistical inferential basis SIB(Tn) induced by Tn in SIB.  
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More precisely, we have the following step-by-step process: 

1. Set T0  = ∅ and SIB0 = SIB(∅) = SIB. 
2. Given Tk and SIBk=SIB(Tk), after the query αk+1 and the answer λk+1,  
     put Tk+1= Tk ∪{(αk+1, λk+1))} and   SIBk+1=  SIB(Tk+1).  
3. If the information is “sufficient” or complete goto 4, otherwise goto 2. 
4. Set µ(β) = µTk+1 (β)    as defined  in  (2). 
5. If Tk+1 is inconsistent with  SIBk+1 then the process is “failed”. 
 
Let us observe that we have different processes depending on the choice of the 
queries and on the “stop”-criterion expressed by the term “sufficient”. As an example, 
the query αi can be selected in order to minimize the expected value of the entropy. 
This is achieved by minimizing the value |µ(αi)−µ(¬αi)| where µ is the valuation 
related to SIBi. Also, let us notice that once a complete information on ac is obtained 
(in the language of the observable properties), Tn = ac and the inferential process 
necessarily terminates by giving a probabilistic valuation of the formulas by  

( ) ( ) ( ) ( ){ }
( ) ( ){ }∑

∑
∈

∈
=

PCc/a,cecw

PCc/,ctra,cecw

c

c α
βµ   

In othe words 
“The probability that the actual case ac satisfies the property β  is given by the 
percentage of the cases OBS- indiscernible from ac   that in the past verified β” .   
Such a point of view gives an answer to the question about the probabilities related to 
singular cases [8]. 

5.   Vague properties and similarities  

In the previous sections we have considered only the presence of crisp attributes. An 
object satisfies or doesn’t satisfy a property. But the real world has a fuzzy nature. In 
the most real situations an object verifies a property with a “degree”.  So, if we 
consider the presence of eventually “vague” properties, it is necessary to extend the 
notions we have considered so far. Firstly, we give some basic notions in multi-valued 
logic. In many-valued logics [4], [5], [9], [12] truth degrees are not two yet, but three 
or more and many different algebraic structures are used for the evaluation of 
formulas. 

In this section we present a class of these structures, the class of MV-algebras, 
devised by C.C.Chang [4], and then we introduce some other notion concerning 
multi-valued logic, such as fuzzy set and fuzzy-similarity. 

Definition 13. An MV-algebra [5] is a structure A = (A, ⊕, ¬, 0) such that (A, ⊕, 0) is 
a commutative monoid satisfying the following additional properties: 
1. ¬¬a = a; 
2. a⊕¬0=¬0; 
3. ¬(¬a ⊕ b) ⊕ b = ¬ (¬b ⊕ a) ⊕ a . 
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On each MV-algebra A we define the element 1 and the operation ⊗ as follows: 
1=¬0     and    a⊗b = ¬ (¬a ⊕ ¬b) .  

A well known example of MV-algebra is given by the Lukasiewicz algebra ([0,1], ⊕, 
¬, 0), where ⊕ is the Lukasiewicz disjunction defined by  

a⊕b = min(1, a+b)   

and ¬a=1−a. As a consequence the operation ⊗ is the Lukasiewicz conjunction 
defined by 

a⊗b= max(0, a+b−1) .   

Lukasiewicz conjuction and disjunction are, respectively, examples of t-norm and t-
conorm [9], [12].  

Definition 14. A triangular norm (briefly t-norm) is a binary operation ⊗ on [0,1] 
such that, ⊗ is commutative, associative, isotone in both arguments, i.e.,                            
x1 ≤ x2  ⇒  x1⊗ y ≤ x2 ⊗ y and  y1 ≤ y2  ⇒  x ⊗ y1 ≤ x ⊗y2,   and ⊗ verifies the boundary 
conditions, i.e. 1⊗ x = x = x ⊗ 1   and   0 ⊗ x = 0 = x ⊗ 0, for all x, y, z, x1, x2, y1, y2 ∈ 
[0,1]. 

Definition 15. A t-conorm is a binary operation  ⊕ : [0,1]2 
→ [0,1] such that ⊕ is 

commutative, associative, isotone in both arguments, and such that 0 ⊕ x = 0 = x ⊕ 0   
and   1 ⊕ x = x = x ⊕ 1. 

Moreover, the t-conorm ⊕ is dual to a given t-norm ⊗ if, for every x, y ∈[0,1], 
x ⊕ y =1−((1−x) ⊗ (1−y)) .  

For each t-norm, we can consider the associated biresiduation, suitable to 
represent the truth function of equivalence. In the case of Lukasiewicz conjunction, it 
is defined by  

a ↔⊗  b = 1−a−b .  

and some its properties are listed in the following: 
• x ↔⊗x = 1,  
• x ↔⊗ y = 1  ⇔ x = y, 
• (x ↔⊗  y) ⊗ (y ↔⊗ z) ≤ x ↔⊗  z, 
• x ↔⊗ y = y↔⊗  x . 

 

 
Fuzzy set theory [19] can be regarded as an extension of the classical one, where 

an element either belongs or does not belong to a set. Fuzzy set theory permits the 
gradual assessment of the membership of elements to a set, by a generalized 
characteristic function.  
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Definition 16. Let S be a set and let us consider the complete lattice [0,1]. We call 
fuzzy-subset of S any map s:S →[0,1] and we denote by [0,1]S or byℑ(S) the class of 
all the fuzzy-subsets of S. 
 
Given any x in S, the value s(x) is the “degree of membership” of x to s. In particular, 
s(x)= 0 means that x is not included in s, whereas 1 is assigned to the elements fully 
belonging to s. Any fuzzy subset s such that s(x)∈{0,1}, for any x∈ S, is called crisp 
set. Given λ∈[0,1], we denote by sλ the fuzzy set constantly equal to λ.  
 
Definition 17. Let ⊗ be the Lukasiewicz conjunction and ⊕ be the Lukasiewicz 
disjunction. We define the union, the intersection and the complement by setting, 
respectively, for any s, s’∈ℑ(S) and for every x∈S,  

• (s ∪⊕ s’)(x) = s(x) ⊕ s’(x) 
• (s ∩ ⊗s’) (x) = s(x) ⊗ s’(x) 
• (∼s)(x) =  − s(x) . 

 

Proposition 18. The structure (ℑ(S),∪⊕, ∩⊗, ∼, s0, s1) is an MV-algebra extending the 
Boolean algebra (P(S) , ∪, ∩, ∼, ∅, S) of the subsets of S  .  

In the following we denote this MV-algebra also by (ℑ(S), ⊕, ∼, s0).  
 
A special class of fuzzy sets is given by the concept of similarity [18], which is 
essentially a generalization of an equivalence relation.  

 
Definition 19. Let ⊗ be the Lukasiewicz conjunction. A ⊗-fuzzy-similarity on a set S 
is a fuzzy-relation on S, i.e. a fuzzy subset of S×S, E: S×S→ [0,1], satisfying the 
following properties  

1. E(x,x)=1                                                                                         (reflexivity) 
2. E(x,y) = E(y,x)                                                                                (symmetry) 
3. E(x,y) ⊗ E(y,z) ≤ E (x,z) .                                                       (⊗- transitivity) 

 

 
The logical meaning of the ⊗- transitivity is that “if x is similar to y with a degree 
E(x,y) and y is similar to z with a degree E(y,z) then x  is similar to z with a degree     
E(x,z) greater or equal to E(x,y) ⊗ E(y,z)”.  
Let us recall that for any t-norm we can have a corresponding notion of fuzzy 
similarity but we give the definition directly by the Lukasiewicz conjunction because 
we will use it in the proposed inferential process.  

In the following we refer to the following basic theorem enabling to extend 
Proposition 8 to vague properties (see Valverde [17]) and, in a sense, related with 
Leibniz’s indiscernibility principle.  
 
Proposition 20. Consider a finite family (si)i∈I of fuzzy subsets of a set S and define 
the fuzzy relation 
 e(x,y) = ⊗i∈I si(x)↔⊗si(y). 
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Then e is a ⊗-similarity in S.  
 

6. Probabilistic logic in fuzzy framework. 
In this section we extend the basic notions of probabilistic logic, exposed in Section 3 
and, since we will admit the presence of eventually “vague” properties in the 
inferential process, we have to consider probabilistic valuation of fuzzy subsets. In 
particular, we refer to the concept of state [11], which is a generalization on MV-
algebras of the classical notion of (finitely additive) probability measure on Boolean 
algebras. In the following, we denote by F the set of formulas in the language of a 
many-valued logic. More precisely, we refer to a logic whose propositional calculus 
assumes truth values in an MV-algebras.  

 
Definition 20 Let (A, ⊕, ¬, 0) be an MV-algebra. An MV-valuation is any map 
vf:F→A  satisfying the following properties: 
• vf(α∨β) = vf(α)⊕vf(β) , 
• vf(α∧β) = vf(α)⊗vf(β) , 
• vf(¬α) = ¬vf(α) . 
 
Trivially, vf  is a truth-functional map by definition. Moreover, a formula α is called 
tautology if vf(α) = 1 and it is called contradiction if vf(α) = 0, for any MV-valuation 
vf. Two formulas α and β are logically equivalent if vf(α) = vf(β) for any valuation vf. 

 
Definition 21. A state of an MV-algebra A is a map pf: A →[0,1] satisfying the 
following conditions: 
1. pf (0) = 0 , 
2. pf (1) = 1 , 
3. pf (a ⊕ b) = pf (a) +  pf (b)      for every a, b∈ A  such that     a ⊗ b = 0 . 
 

A natural example of state in the MV-algebra (ℑ(X), ⊕, ∼, s0), where we have 
Lukasiewicz disjunction, is given by [21]:   

 
Proposition 22. Let X be a finite set and p:{0,1}X→[0,1] an arbitrary probability 
measure on {0,1}X. Let the map pf: ℑ(X)→ [0,1] be defined, for every s∈ℑ(X), by  

pf(s) = Σ{ s(x)p(x)  / x∈X }.  

Then pf   is a state of the MV-algebra (ℑ(X), ⊕, ∼, s0). 
 
We introduce the notions of MV-probability valuation of formulas and, then, of A-
probability valuation which enables us to obtain the truth-functionality of the first 
one.  

Definition 23. An MV- probability valuation of F is any map µ: F → [0,1] such that:  
• µ(α) = 1                                               for every tautology α,  
• µ(α∨β) = µ(α) + µ(β)                           if α∧β is a contradiction,  
• µ(α) = µ(β)                                           if α is logically equivalent to β.  
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Let us observe that the only difference with Definition 7 is that the notions of 
“tautology”, “contradiction” and “logically equivalent” are intended in the sense of 
Definition 17. 

Definition 24. An A-probability valuation is a structure (A, vf, pf) where 

• A is an MV- algebra,  
• vf: F→A is a truth-functional MV-valuation of formulas,  
• pf: A → [0,1] is a state on A.  

The notion of A-probability valuation is connected to that one of MV-probability 
valuation [13]. 

Proposition 25. Let (A, vf, pf) be an A-probability valuation and let us define 
µ:F→[0,1] by setting µ(α) = pf(vf(α)) for every α∈F. Then µ is an MV-probability 
valuation. Conversely, let µ:F→[0,1] be any MV-probability valuation in F. Then an 
MV-algebra A and an A-probability valuation (A, vf, pf) exist such that µ(α)=pf(vf(α)) .  

7. Fuzzy Statistical Inferential Bases  

In order to create a database of past cases verifying eventually vague properties in this 
section we extend the definitions presented in Section 4. We refer to a generalization 
of the basic notion of formal concept analysis [7], [16]. 

Definition 26. A fuzzy formal context [14] is a structure (Ob, AT, trf) where: 

• Ob  is a finite set whose elements we call objects, 
• AT  is a finite set whose elements we call attributes, 
• trf : Ob × AT →[0,1]  is a fuzzy binary relation from Ob  to AT. 
 
The fuzzy relation trf connects any object with any attribute, i.e. the value trf(o, α) is 
the truth degree of the claim “the object o satisfies the property α”. As in Section 4, 
we consider as set of objects the set of “past cases” and we distinguish two types of 
attributes: we call observable the attributes for which it is possible to discover directly 
whether they are satisfied by the examined case, non observable the others. The 
“actual case”, different from past cases, is considered “similar” to a class of past cases 
if it satisfies their same observable properties. We want to evaluate the probability 
with which the actual case verifies a non observable property.  

Definition 27. A (complete) fuzzy statistical inferential basis is a structure SIBf =(PC, 
AT, OBS, sim, trf, w) such that   
• (PC, AT, trf) is a fuzzy formal context,  
• OBS is a subset of AT, 
• sim: PC→ [0,1] is a fuzzy subset of PC,    

• w : PC → ℕ is a function called weight function,  
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The set PC is that one of past cases and the map trf is called fuzzy information 
function. It provides the degree with which a past case satisfies an attribute. The set 
OBS is the (classical) subset of the observable attributes and the map sim is 
interpreted as the fuzzy set of past cases “similar” to the actual one. The value w(c) 
gives the number of past cases whose representative is c. Then, we set the total weight 
of a fuzzy statistical inferential basis SIBf as 

w(Sf)= ∑{w(c)sim(c) / c∈PC } .                                           

If w(Sf)≠0 then we say that Sf  is consistent. 
Differently from the total weight for a SIB, this formula doesn’t yields the actual 
number of past cases similar to the actual one, but it furnishes a “fuzzy” weight to the 
whole inferential basis by giving a higher value if there are a lot of “similar” past 
cases. 

As in the previous section, we denote by F (by Fobs) the set of formulas of a 
multivalued propositional calculus whose set of propositional variables is AT (or OBS, 
respectively). So we extend trf to the whole set F of formulas by setting  
• trf(c, α∧β) = trf(c, α) ⊗ trf(c, β) , 
• trf(c, α∨β) = trf(c, α) ⊕ trf(c, β) , 
• trf(c, ¬α) = 1− trf(c, α) . 
By referring to the notions introduced in Section 8, we provide definitions of 
valuations associated to a fuzzy statistical inferential basis.  

Proposition 28. Every consistent fuzzy statistical inferential basis SIBf defines an A-
probability valuation (A, vf , pf) in F such that: 
• A  is the MV-algebra (ℑ(PC), ⊕, ∼, s0) ,  
• vf(α) is the fuzzy subset of the past cases satisfying the formula α, i.e.  

vf(α)(c) = trf(c, α)  

• pf: A→[0,1] is the state on A defined, for any s∈ℑ(PC), as in Proposition 19, i.e. 

pf(s) = Σ{ s(c)p(c) / c∈PC} ,  

where p is the probability on {0,1}PC ,  defined by 

p(c) = ( ) ( )
( )fSIBw

csimcw  . 
 

By Proposition 22, any fuzzy statistical inferential basis SIBf can be associated with 
an MV-probability valuation µ of the formulas, defined, for every α, by 

µ(α)= pf(vf (α))= Σ{ trf (c,α ) p(c)  / c∈PC} .  

In other words we have µ(α)= ( ) ( ) ( ){ }
( )f

f

SIBw

PCc/,ctrcsimcw∑ ∈α , and this value 

represents the percentage of past cases similar to the actual case in which α is verified. 
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8.   The Actual Case and its Similar Past Cases  

The indiscernibility relation in Definition 12, used for “crisp” properties, isn’t 
sufficient anymore for “vague” properties. Indeed,  in a classification process, given a 
set of (eventually vague) properties A, and a property β∈A, if tr(c1, α) = tr(c2, α)  for 
every α∈ A \{β} and tr(c1, β) = 0,8  and  tr(c2, β) = 0,9 it is not reasonable to consider 
the two case c1  and c2 not “analogous”. Therefore, it is necessary to take into account 
an extension of the relation such that it results appropriate to a classification handling 
“vague” properties and in order to consider “similar” two cases whit respect to these 
properties. As an immediate consequence of Proposition ... we obtain the following 
one where ⊕ and ⊗ denotes the Lukasiewicz conjunction and disjunction, 
respectively. 

 
Proposition 30. Let SIBf be a fuzzy statistical inferential basis and let (A, vf, pf) be the 
A-probability valuation associated to it. Then, for any subset B of AT, the fuzzy 
relation E: PC×PC →[0,1], defined by setting 

E(c1,c2) = ⊗α∈B( vf(α)(c1)↔⊗ vf(α)(c2)) , (3) 

is a ⊗- fuzzy similarity. 
 
Since the fuzzy set vf(α): PC→[0,1] of past cases satisfying  the property α is defined 
by vf(α)(c)=trf(c, α), we can rewrite (4) as 

E(c1,c2) = ⊗ α∈B( trf(c1, α) ↔⊗ trf(c2, α)) ,  

The value E(c1,c2) furnishes the “degree of similarity” between the two past cases 
c1  and c2  in SIBf. From the logical point of view, it is the valuation of the claim 
“every property satisfied by c1 is satisfied by c2 and vice-versa ”.  

As usual, a similarity can be interpreted in terms of fuzzy similarity classes, one for 
each element of the universe. In our situation, for every case cj, we can consider a 
fuzzy subset simcj: PC→ [0,1]  as the fuzzy class of the past cases “similar” to cj, by 
setting simcj(c) = E(c ,cj ). In particular, we have to identify the past cases similar to 
the actual one. Let us recall that by “actual case” we intend a case different from past 
cases in which the only available information is that one expressed by the set Fobs in 
the language of “observable” properties. The definition of “actual case” in the fuzzy 
situation is a generalization of that one in the crisp case.  
 
Definition 30. We call (fuzzy) actual case any map ac:OBS→[0,1] from the set of 
observable properties to the interval [0,1]. We call piece of information about ac any 
subset of ac, i.e. any partial map T: OBS →[0,1] such that ac is an extension of T.  We 
say that T is complete if T= ac  . 

We denote the actual case by ac or by the family {ac, ac(α)}α∈OBS, indifferently. The 
last notation is more useful in describing the inferential process, where we identify the 
actual case with the “information” about its observable properties, collected by a 
query process. We extend the fuzzy information function trf and the similarity E, 
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given in (3) to the actual case by setting trf(ac, α)= ac(α) for every α∈OBS  and, given 
a piece of information T about ac, we set  

ET(c, ac)= ⊗α∈Dom(T)  (trf(c, α) ↔⊗  trf(ac, α) ) .  

So, it results that the past case c is similar to the actual case ac,   given the information 
T, with degree ET(c, ac). If T is complete then we write E(c, ac) instead of ET(c, ac).  
 
Definition 31. Let SIBf be a fuzzy statistical inferential basis. We say that a piece of 
information T is consistent with SIBf if there exists c∈PC such that sim(c)≠0 and            
ET (c, ac)≠0 . 
 
If T is consistent with SIBf, then in our database there is at least a past case c similar to 
ac according to the available information T.   

9. Fuzzy Statistical Inferential Bases Induced by a Piece of 
Information and the Step-by-Step Inferential Process 

Given a fuzzy statistical inferential basis SIBf and a piece of information T on the 
actual case ac, we obtain a new fuzzy statistical inferential basis SIBf(T) from SIBf.  

Definition 32. Let SIBf be a consistent fuzzy statistical inferential basis and T be a 
piece of information on ac. We call fuzzy statistical inferential basis induced by T in 
SIBf the structure SIBf(T)=(PC, AT, OBS, simT, trf, w), where simT  is defined by 
setting simT(c) = sim(c) ⊗ ET(c, ac) . 
 

Let us observe that simT can be regarded as the fuzzy class of the past cases 
“similar” to ac given the information T. Then, in accordance with Proposition 25 and 
given the A-probability valuation (A, vf, pf) associated to SIBf, the induced fuzzy 
statistical inferential basis SIBf(T) defines an A-probability valuation (A, vf

T, pf
T )  

where:  
• A is the MV-algebra (ℑ(PC), ⊕, ∼, s0) ,     
• vf

T : F→ A is an MV-valuation of the formulas defined by 

                    vf
T (α)(c) = simT(c) ⊗ vf(α)(c) = sim(c) ⊗ ET(c, ac) ⊗ trf(c, α) ,  

i.e. vf
T(α) is the fuzzy set of the past cases similar to ac (given the   information T) and 

verifying the formula α , 
• pf

T: A→[0,1] is the state on A defined by setting, for any s∈ ℑ(PC), 

pf
T(s)= Σ{ s(c) pT(c) / c∈PC} ,  

where pT is the probability on {0,1}PC given by   

pT(c) = ( ) ( )
( )( )TSIBw

csimcw

f

T = ( ) ( )
( ) ( ){ }∑ ∈ PCx/xsimxw

csimcw

T

T   .  
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So, give a fuzzy statistical inferential basis SIBf and a piece of information T, we 
obtain an MV-probability valuation µT of the formulas, defined, for every formula α, 
by 

               µT(α)=  pf
T(vf

T(α)) = Σ{[ simT(c)⊗ vf(α)(c)] pT(c) / c∈PC} .            (4) 

Let us observe that we obtain 

µT(α)= ( ) ( ) ( ) ( )[ ]{ }
( ) ( ){ }∑

∑
∈

∈⊗
PCc/csimcw

PCc/,ctrcsimcsimcw

T

fTT α  , (5) 

and it represents the percentage of the past cases verifying α among the cases in SIBf  
considered similar to ac according to the available information T.       

 
Now, let us imagine the expert system has to evaluate the probability that an actual 

case ac verifies a non observable formula β. Let us suppose that in the initial  fuzzy 
statistical inferential basis SIBf, the map sim is constantly equal to 1, i.e. we are 
considering all the past cases “similar” to the actual one. The information on ac can be 
obtained by a query-strategy. Let us denote by α1,…,αn  a sequence of appropriate 
queries about observable properties of ac. Then, we set T0 =∅ and, given a new query 
αi , we set  Ti =Ti-1∪{(αi, λi), where λi ∈[0,1] is the degree with which the actual case 
verifies the property  αi. Consequently, we obtain a sequence of corresponding fuzzy 
inferential statistical basis {SIBf(Ti)}i=1,…,n .At every step we have the probability that 
ac  satisfies β given the available information.  
 
Definition 33 Let SIBf be an initial fuzzy statistical inferential basis and β be a 
formula in F. Let Tn be the available information on ac obtained by a sequence of n 
queries. Then we call probability that ac satisfies β  given the information Tn, the 
probability of β in the fuzzy statistical inferential basis SIBf(Tn)  induced by Tn in SIBf. 

 
More precisely, the step-by-step inferential process is analogous to that in Section 7: 

1. Set T0  = ∅ and SIB0 = SIBf(∅) = SIBf. 
2. Given Tk and Sk=Sf(Tk), after the query αk+1 and the answer λk+1,  
     put Tk+1=Tk ∪{(αk+1, λk+1))} and   SIBk+1=  SIBf(Tk+1).  
3. If the information is “sufficient” or complete goto 4, otherwise goto 2.  
4. Set µ(β) = µTk+1 (β)    as defined  in  (4). 
5. If Tk+1 is inconsistent with SIBk+1 then the process is “failed”. 
 

Let us notice that if the information on ac is complete, then Tn=ac and the 
inferential process terminates. In such a case in (5), simT(c)=E(c,ac) and (5) represents 
the percentage of the past cases similar to ac  satisfying β in the past.  

 
Let us observe that the proposed process is also interpretable in the framework of 

case-based reasoning (see for example [15]). Indeed, if we interpret the set of non 
observable attributes AT-OBS as the set of probable “solutions” and the value tr f(c, α), 
with α∈AT-OBS, as the “validity degree” of the solution α  for the case c collected in 
the database, the final value µT(α) represents a “validity degree” of the solution α for 
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the actual case. In such a case µT(α) is the percentage of the past cases similar to ac for 
which α was a “good solution”. Our approach is close to case-based reasoning, 
systems since we make a prediction on a new case by observing precedent cases. On 
the other hand, the prediction, probabilistic in nature, is obviously different from that 
one used in other approaches, generally possibilistic in nature [6]. 

10.   Future works and open questions  

The researches related with the sketched expert systems are at an initial state and 
several questions are open. The main one is to test such an idea in some concrete 
cases. To this regard, observe that there is no difficulty in realizing a suitable program 
in any relational database management system (see [3]). ??? 
 A second question is related with the difficulties of interpreting the probabilistic 
valuation of a formula in SIBf(T) as a conditioned probability in SIBf (as we have 
made for the crisp case in Section 6). In fact, we can define the conditioned state, as 
in the classical probability theory, by setting pf(s/t) = pf(s⊗t)/ pf(t) and, due to the 
associativity of ⊗, pf satisfies the iteration rule of the classical conditioning for a 
probability, i.e. pf(s/t∩⊗v)= pf(s∩⊗t/v) / pf(t/v) . This is a basic property that it is useful 
in the inferential process and for a possible implementation of the expert system. 
Unfortunately, pf doesn’t result a state, since ⊗ is not distributive with respect to ⊕. 
So, we might look for an adequate definition of state, such that the corresponding 
conditioned state verifies the iteration rule.  
 Another question is related to the kind of the available information on the actual 
case. Indeed, it should be natural to admit that this information can be expressed by 
intervals, i.e. T = {ac, I(α)} where I(α) is a closed interval in [0,1]. In fact, it is natural 
to admit that the truth value of α cannot be given in a precise way and that the truth 
value of α is approximate by an interval I(α). The intended meaning is that the 
precise truth value of α in ac is in I(α). In other words we can refer to interval-valued 
fuzzy subsets to represent the extension of a vague predicate. If we admit such a 
possibility, then it is necessary to find an analogue of Proposition Valverde ... ? 
enabling us to define an “interval-valued” similarity by considering interval-valued 
fuzzy subsets. 

Finally, a basic question is related with the search for an optimal strategy in the 
choice of the queries in the fuzzy framework. Indeed, it is not clear if also in the case 
of the vague properties, a good strategy is obtained by minimizing the expected value 
of the entropy.  
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