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Abstract. In accordance with an idea in [8], in this paper sketch a
method to design expert systems, probabilistic ature. Indeed, we
assume that the probability that an individualsfets a property is the
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1 Introduction

Imagine that we claim that
(i) the probability of the statemetd bird is able to fly 'is 0.9,
and compare such a claim with the following one
(ii) the probability of the statemehiTweety is able to fly 15 0.9.
Then, as emphasized by F.Bacchus in [1] and J.Yg#alin [2] the justifications of
these probabilistic assignations looks to be vafferént. In fact, (i) expresses a
statistical information about the proportion ofefé among the set of birds. Such
information, related to the class of birds, isisteal in nature. Instead it seem very
hard to justify (ii) from a statistical point ofaiv and this since (ii) one refer to a
particular bird (Tweety) and not to a class of edets. As a matter of fact either
Tweety is able to fly or not and the probabilistaduation in (ii) is adegree of belief
depending on the level of my knowledge about thgabdities of Tweety. In [8] it is
proposed the idea that in such a case we canteftie class of birds “similar” to
Tweety. More precisely, the belief expressed ipifibased on the past experience
about the percentage of birds similar to Tweety abte to fly. Obviously, the
valuation of the similarity depends on the inforimaton Tweety we have. So, both
the probabilistic assignments in (i) and in &iig statistical in nature.

On the basis of such an idea, in [3] a methocetigh probabilistic expert systems
was proposed. The crucial notion of similarity &fided in accordance with Leibniz’
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principle. Indeed, two individual are called “sianil provided that they share the
sameobservableproperties.

In this paper we reformulate the approach sketam¢8] and we extend it in order
to admit vague properties. In doing this, we admptew formalism which is very
close toformal concept analysigsee [7],[16], [18]) and which is adequate for a
suitable extension to the fuzzy framework. Thisdealso to consider the crucial
notion ofstate[11], [21].

2. Probabilistic valuations of the formulasin classical logic

In this section we recall some basic notions obphilistic logic. In the following we
denote byF the set of formulas of a classical zero-order Usngg.

Definition 1. Let B = (B, J, [J, —,0,1) be a Boolean algebra. Boolean valuatiorof F
(briefly B-valuatior) is any mapv: F—B satisfying the following properties, for any
andg.

o V(edB) = Vv(@)DV(D),

* V(alh) = V(a)M(B),

* V(=a) =1-Vv(a) .

If Bis {0, &, O, O, -, 0, 1), then theB-valuation coincides with the usual truth
assignment of the formulas in classical logic. @bsehat aB-valuationis truth-
functional by definition, i.e. the truth value ofcampound formula depends on the
truth values of its compounds, unambiguously. Arfola o is calledtautologyif v(a)

= 1 for everyB-valuationv and contradiction if v(a) = O for everyB-valuationv.
Two formulase andg are calledogically equivalenif v(a) = v(f) for anyv.

Definition 2. A probability valuationof F is any map:: F — [0,1] such that:

1 u(a) =1 for every tautology:,
2. u(ap) = u(a) + u(p) &) is a contradiction,
3. u(a) = u(p) dfis logically equivalent t@ .

Let us observe that if is a probability valuation, ther(a) = 0 for every contradiction
o. Indeed, in such a case, singeis logically equivalent toaa and allx is a
contradiction, by2. and by3., we have that(a) = u(ala) = u(e) + u(a). This entails
thatu(a) = 0.

As it is well known, probability valuations are riotith-functional. Nevertheless,
the truth-functionality can be obtained by meanthefnotion oB-valuation.

Definition 3. A B-probability valuationof F is a structureR, v, p where
» Bis a Boolean algebra,

» v: F—Bis aB-valuation (truth-functional),

e p: B—[0,1]is a finitely additive probability oB.
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The notion oB-probability valuation and that one of probabiNgluation are strictly
related as it is asserted in the following proposi(see [3]) .

Proposition 4. Let (B, v, p be a B-probability valuation and let us defim&— [0,1]
by settingu(a)= p(v(a)) for everyalF. Thenu is a probability valuation. Conversely,
let u: F— [0,1] be any probability valuation in F. Then a Booledgebra B and a B-
probability valuation(B, v, P exist such that(a) = p(v(«)).

Due to the Representation Theorem of Boolean adgel?], [12], it is not
restrictive to assume th&tis an algebra of subsets of a SeMoreover, we prefer
identifying the subsets of a set with the relatedracteristic functions. So we refer to
Boolean algebras 49,1} *instead of P(S) as we will see later on.

3. Formal contexts, statistical inferential bases and indiscer nibility

The first important step to design a probabilistipert system is to create a database
storing information about past cases we considete® to the actual one (see [3],
[8]). The notion offormal contextseems suitable to represent this kind of collected
information. This concept is a basic notiorfaimal concept analysig], [18], which

is usually used to identify patterns in data andctvliecognizes similarities between
sets of objects based on their attributes.

Definition 5. A formal contexts a structure@b, AT, tr)where:
« Ob is afinite set whose elements we cddjects

» ATis a finite set whose elements we edifibutes

e tr: Obx AT -{0,1} is a binary relation frorb to AT.

Given an objecb and an attributer, tr(o,a) = 1 means that the objezipossesses
the attributea while tr(o, @) = 0 means that doesn'’t satisfy. Is easy to represent a
formal context by a table, where the objects ame ¢lements of the rows, the
attributes are the elements of the columns antl thexcells of the table there are 0 or
1. We consider as set of objects a set of “pagistaand we distinguish two types of
attributes: we callobservablethe properties for which it is possible to discover
directly whether they are satisfied or not by tkamined case. Otherwise, a property
is callednon observableAs an example, an event that will happen in thiergé is a
non observable property. Furthermore the past casesclassified according to
observable properties; the “actual case”, i.e.rtbe examined case different from
past cases, is considereahalogous to a class of past cases if it satisfies themea
observable properties.

Definition 6. A (completg statistical inferential basiss a structureSIB = (PC, AT,
OBS, an, tr, Wwsuch that

» (PC, AT, tr) is a formal context,

* OBSis a subset OAT,

e an: PC-{0,1} is a map fronPCto{0,1},



-26 -

 w: PC - N is a function calledveight function

We call the elements &fC past caseand the maypr: PC x AT -{0,1} information
function. The setOBSis the subset of thebservable attributesind the magn is
regarded as the (characteristic function of thepgpast cases analogoio the actual
one. The meaning of the numbe(fc) = n is that the past caseis the representative
of n analogous cases. Then, we settttial weightof a statistical inferential bas&B
as

w(SIB)=>{w(c)an(c) / cOPC}.

It corresponds to the number of the past casesgmad to the actual case represented
globally by SIB If w(SIB#0 then we say that the statistical inferential asi
consistent

We denote by (by Fon9 the set of formulas of the propositional calcuusose
set of propositional variables &T (is OBS respectively). As usual, the functiom
can be extended to the whole Baif formulas by setting, for every formutaandp,
» tr(c, ap) = min{tr(c, a), tr(c, A},
» tr(c, adp) = maxtr(c, a), tr(c, A},
* tr(c,—a) = 1-tr(c, a).
In this way, any past case is associatett byith a classical valuation of the formulas
inF.

In accordance with the basic notions of probaliliktgic, exposed in the previous
section, now we provide some definitions of valolas associated to a statistical
inferential basiSIB.

Proposition 7. Every consistent statistical inferential basis SIEPC, AT, OBS, an,
tr, w) defines a B-probability valuatiofiB, v, p in F such that:

« B is the Boolean algebrd 0,1}, O, n, O ¢, Cpc),
* Vv(a): PC—{0,1} is (the characteristic function pthe set of past cases satisfying
a, i.e.

v(a) (c)=tr(c, a),

« p: B—[0,1]is the probability in B defined by setting, for ay{0,1} ",

o(9 = 2 tw(can(c)s(c)/ copcy |
w(sIB)

In particular, we have tha(c) =p({c}) = w(c)an(c) .
w(sIB)
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As a consequence of Proposition 9 and Propositbrardy statistical inferential
basisSIB can be associated with a probability valuationf the formulas. So we
have, for every formula,

M(d) = p(v()) = 2 W(c)an(ckr (c.a)/cOPC}
w(sIB)

In other wordsu(a) represents the percentage of past cases (analégdhbe actual
case) in which is true according to the stored dates.

According to the main idea we refer, it is impottemspecify which relation we take
into account in order to consider “analogous” tvases. In the following, we will
introduce a formalism very close to Pawlak’ s ohé][and remembering Leibniz’s
indiscernibility principle for which two individualare indiscernible if they share the
same properties.

Definition 8. Let A be a subset AT. Let - be the operation corresponding to the
equivalence in the classical zero-order languageecaRCxPC - {0,1} be a relation
on PC defined by setting

€&(Cy, ©) = Inf g tr(Cy, @) & tr(cy, @). (1)
If e(cy, &) = 1 we call the two casesandc, A-indiscernibleand we writec; =, C,.

Let us observe that two cases Armdiscernible iftr(c,, a) = tr(c,, o) for everyal A,

i.e. if they satisfy the same propertiesAinit is immediate that, is an equivalence
relation in PC. Then, for every casewe can consider the corresponding equivalence

class £]a and, obviously, the quotient BIC modulo=,.

In particular, we are interested to identify thasipcases satisfying the same
observable properties of the actual case. Leteallrinat by “actual case” we intend a
case different from past cases in which the onlgilable information is that
expressed by the sBtysin the language of “observable” properties. To aim it is
important to give an adequate definition of actsde.

Definition 9. We call actual caseany mapa.;: OBS-{0,1} from the set of the
observabléOBSto {0,1}. We callpiece of informatiorabout a any subset o, i.e.
any partial mapl: OBS-{0,1} such thata; is an extension of. We say thafl is
completef T=a..

So, we identify the actual case with the “complefermation” about its observable
properties. As we will see in the next sections,oan collect pieces of information
abouta. by a query procesi the following we denote the actual caseabgr by the
family {(a, a(@)}.coss indifferently. We extend the information functidénto the
actual case by setting(a,, a) = aJ(a) for everya 0OBSand then to the whole set
Fous Of observable formulag the usual way. We also extend the relat®iby
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considering pieces of information on the actualecas Indeed, given a piece of
informationT, we set

er(c, , a) = Inf gpomm tr(c, a) « tr(ag, a) .

If er(c, a)) = 1, thenc is a past case which @BS-indiscerniblefrom the actual case
a. given the informatiof. If T is completehen we writeg(c, a.) instead oky(c, a.).

Definition 10. Let SIB be a statistical inferential basis. We say thatiece of
informationT is consistent with SIB there exists a past cas@PC such thaan(c)Z0
ander(c, a)#0.

Let us observe that if is consistent wittSIB there is a past cageanalogous to the
actual case according to the available informaliphe. a past caseexists such that
it satisfies the same observable propertg.ofith respect tdr.

Given a statistical inferential bas®dB = (PC, AT, OBS, an, tr, \representing
the basic information, and a piece of informatiom the actual cas&@ = {(a1,
T(a),..., @ T(a,))}, we are able to obtain a new statistical infeedriiasisSIB(T)
from SIB.

Definition 11. Let SIBbe a statistical inferential basis aha piece of information on
a. consistent withSIB. We call statistical inferential basisnducedby T in SIB the
structure:

SIB(T) = (PC, AT, OBS, an, tr, w),
whereany is defined by settingny(c) = an(c) er(c, &).

In accordance with Proposition 11 and also consideheB-probability valuation
(B, v, p associated t&IB, the statistical inferential bas&T) defines aB-probability
valuation B, v, pr) where:

« Bis the Boolean algebf§0,1} ", O, n, 0 cg, Cro),
* vy F- Bis aB-valuation of the formulas iR defined by

vi(e)(c) = anr(c)v(e)(c) = an(c)er(c.a)tr(c.o) ,

i.e.vr(a) is (the characteristic function of) the set o$tpeases which are indiscernible
from a. (given the available informatioR) andverifying «,
 pr: B—[0,1] is the probability of8 defined by setting, for arsi1{0,1}"°,

5)= > {w(c)an; (c)s(c)/cOPC} D

w(siB (T))

px (

As usual, we have a probability valuatian of the formulas defined, for every
formulaa, as u(a) = pr(vr(a)), i.e.

)= > {w(c)an, (c)r (c.a)/ cOPC} 2

4+ ( w(siB (1))
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The numbef(a) is the percentage of the past cases verifgiagnong the cases &
considered analogous @gtaking into account the available informatibn

Obviously, the probabilityr, defined in (1)can be regarded as tkhenditioned
probability p(_/my), wherem; denotes the set of past cases indiscernible &agiven
T. Indeed, for ang {0,1}7° and by 0, we have

S eRehn, 0 e0P)
STl (0777
_ 2 c)s(clan; (c)/cOPC) w(S) _
WS) S (o (777
S {welsearicle, 0 )repd ws) :
w(S) > {wlc)an(c)e, (c.a,)/cOPC}
_ > {w(c)s(c)an(c)m; (c)/ cOPC} w(S)

w(S) > {w(c)an(c)m; (c)/cOPC} )
p(sn m;)

= p(s/my).
p(m;)

Consequently, for every formula also the probability valuatiom: can be regarded
as theconditioned probabilityir (o) = p(a / my).

4. A step-by-step Inferential Process

In this section we describe how the step-by-steerémtial process works. We
imagine an expert system whose inferential engioetains aninitial statistical
inferential basisSIB, i.e. a statistical inferential basis such thatis constantly equal

to 1. This means that initially and in absencenééimation ona. we assume that all
the past cases are analogous to the actual caseesSively, we can obtain
information ona. by a sequence, , ... a, of queries about observable properties. So,
we setTo= [ and, given a new query, we sefT; = Ti.;0{(&;,A)} where A = 1if the
answer is positive (the actual case verifigsand/; = 0 otherwise. As a consequence,
we obtain a sequence of corresponding inferentidistical basig SIB(T;)}i=1,..» At

every step we can evaluate the probability thasatisfies/ given the ava|lable
information.Obviously, we are interested to a non observalipgity .

Definition 12. Let SIB be an initial statistical inferential basis afidbe a formula in
F. LetT, be the available information @ obtained by a sequencerofjueries. Then
we callprobability that g satisfiesS given the informationJ the probability off in
the statistical inferential bas&B(T,) induced byT,, in SIB.



-30-

More precisely, we have the following step-by-gtepcess:

1. SetT, = @ andSIB, = SIB(Y) = SIB.

2. GivenT, andSIB=SIB(T)), after the queryy.; and the answely,,
PUtTys1= Tk O{( a1, Ake1))} @nd SIBey= SIB(Tya).

3. If the information is $ufficient or completegoto 4, otherwise goto 2.

4. Setu(B) =um«1(P) as defined in (2).

5. If T+1is inconsistent withSIB.; then the process idiled’.

Let us observe that we have different processgzending on the choice of the
gueries and on thestog-criterion expressed by the termadfficient. As an example,

the querya; can be selected in order to minimize the expectdde of the entropy.
This is achieved by minimizing the valu&(d;)-u(-a;)| whereu is the valuation
related toSIB. Also, let us notice that once a complete infofamabna. is obtained
(in the language of the observable properti@s)= a. and the inferential process
necessarily terminates by giving a probabilistitiaéion of the formulas by

D {w(c)e(c.a )tr (c,a)/ cOPC}
u(p)= > {w(c)e(c.a,)/ cOPC}

In othe words

“The probability that the actual case. aatisfies the property? is given by the
percentage of the cases OBS- indiscernible frprthat in the past verified’ .

Such a point of view gives an answer to the queslmout the probabilities related to
singular cases [8].

5. Vaguepropertiesand similarities

In the previous sections we have considered omyptiesence of crisp attributes. An
object satisfies or doesn't satisfy a property. Bt real world has a fuzzy nature. In
the most real situations an object verifies a prgpwith a “degree”. So, if we
consider the presence of eventually “vague” progertt is necessary to extend the
notions we have considered so far. Firstly, we giwee basic notions in multi-valued
logic. In many-valued logics [4], [5], [9], [12]uth degrees are not two yet, but three
or more and many different algebraic structures ased for the evaluation of
formulas.

In this section we present a class of these strestuhe class ofV-algebras
devised by C.C.Chang [4], and then we introduce esather notion concerning
multi-valued logic, such dsizzy seandfuzzy-similarity

Definition 13. An MV-algebra[5] is a structuréd = (A, [, =, 0) such that4, O, 0) is
a commutative monoid satisfying the following adutial properties:

1. -—-a=a

2. a0~ 0=-0;

3. —|(—|aD b) Ob=- (ﬂbD a) Oa.
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On eachMV-algebraA we define the element 1 and the operafioas follows:
1=-0 and alb=- (-al-b).

A well known example oMV-algebra is given by thieukasiewicz algebrg0,1], O,
=, 0), wherd is theLukasiewicz disjunctiodefined by

allb =min(1, atb)

and -a=1-a. As a consequence the operatidnis the Lukasiewicz conjunction
defined by

allb=max0,a+b-1).

Lukasiewicz conjuction and disjunction are, respety, examples of-norm andt-
conorm[9], [12].

Definition 14. A triangular norm (briefly t-norm) is a binary operatiofil on [0,1]
such that, 0 is commutative, associative, isotone in both amgus i.e.,
X1<% = xdysxwOyand 1<y, = xOy;<x0Oy, andd verifies the boundary
conditions, i.e. I x=x=x01 and @ x=0=x00, forallx,y, z, X %, Y1, ¥» O
[0,1].

Definition 15. A t-conormis a binary operationd : [0,1F — [0,1] such thaf] is
commutative, associative, isotone in both argumemtd such that 0l x=0=x0 0
and 10x=x=x01.

Moreover, the t-conorml is dualto a given t-nornt] if, for everyx, y[[0,1],
xOy=1-((1—-x) O (1-y)) .

For each t-norm, we can consider thssociated biresiduatignsuitable to
represent the truth function of equivalence. Indhse of Lukasiewicz conjunction, it
is defined by

aopb=1-labl.

and some its properties are listed in the following
e X opX=1,

* Xopy=1 = Xx=Y,

* XepYO end<xopngz

* Xopy=YeoX.

Fuzzy set theory [19] can be regarded as an exterddithe classical one, where
an element either belongs or does not belong tet.aFsizzy set theory permits the
gradual assessment of the membership of elements set, by a generalized
characteristic function.
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Definition 16. Let Sbe a set and let us consider the complete lafidd. We call
fuzzy-subsedf S any maps:S —[0,1] and we denote by [03pr by/{S) the class of
all the fuzzy-subsets &

Given anyx in S the values(x) is the “degree of membership” »to s. In particular,
s(x)= 0 means that is not included irs, whereas 1 is assigned to the elements fully
belonging tos. Any fuzzy subses such thas(x)[1{0,1}, for anyxO S is calledcrisp

set Given.[0,1], we denote by the fuzzy set constantly equalito

Definition 17. Let O be the Lukasiewicz conjunction amd be the Lukasiewicz
disjunction. We define thenion the intersectionand thecomplemenby setting,
respectively, for ang, s /(S and for everxdS,

* (sOos)(x) =s(x) Us(x)

* (5nps) (¥ =s(x) Us(x)
* (B = -3 .

Proposition 18. The structurg/{S),0, np, 0 <, ') is an MV-algebra extending the
Boolean algebrgdP(S) , 0, n, 00 O, S of the subsets of S .
In the following we denote thiglV-algebra also by[{(S), O, [ &).

A special class of fuzzy sets is given by the cphad similarity [18], which is
essentially a generalization of an equivalencdicgla

Definition 19. Let [0 be the Lukasiewicz conjunction. [A-fuzzy-similarityon a seS
is a fuzzy-relation orf, i.e. a fuzzy subset d&xS, E SxS— [0,1], satisfying the
following properties

1. E(x,¥=1 reflexivity)
2. E(x,y) = E(Y,X symmetry
3. E(x,y) OE(Y,2 <E(x,2. (- transitivity)

The logical meaning of thél- transitivity is that “ifx is similar toy with a degree
E(x,y) andy is similar toz with a degredE(y,2 thenx is similar toz with a degree
E(x,2 greater or equal tB(x,y) O E(y,2".
Let us recall that for any t-norm we can have aregponding notion of fuzzy
similarity but we give the definition directly bhe Lukasiewicz conjunction because
we will use it in the proposed inferential process.

In the following we refer to the following basicettrem enabling to extend
Proposition 8 to vague properties (see Valverdd)[add, in a sense, related with
Leibniz’s indiscernibility principle.

Proposition 20. Consider a finite family) of fuzzy subsets of a s&tand define
the fuzzy relation

e(xy) = Do s(X) < os(y)-
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Theneis alJ-similarity in S,

6. Probabilistic logic in fuzzy framework.

In this section we extend the basic notions of philistic logic, exposed in Section 3
and, since we will admit the presence of eventudllggue” properties in the
inferential process, we have to consider probdtailigaluation of fuzzy subsets. In
particular, we refer to the concept sthte[11], which is a generalization ovV-
algebras of the classical notion of (finitely addi) probability measure on Boolean
algebras. In the following, we denote Bythe set of formulas in the language of a
many-valued logic. More precisely, we refer to gidowhose propositional calculus
assumes truth values in BtV-algebras.

Definition 20 Let (A, O, -, 0) be anMV-algebra. AnMV-valuationis any map
vi.F - A satisfying the following properties:

* Vi(alB) = Vi) UW(B) ,

* Vi(alB) = i) UW(p) ,

* Vi(-a) = v(a) -

Trivially, v is a truth-functional map by definition. Moreover formulaa is called
tautologyif w(a) = 1 and it is calle@ontradictionif v((a) = 0, for anyMV-valuation
vr. Two formulase andg arelogically equivalentif vi(a) = w(f) for any valuatiorv;.

Definition 21. A state of an MV-algebraA is a mapp: A -[0,1] satisfying the
following conditions:

1p(0)=0,

2p@)=1,

. pp(@db)=p;(@ + pr(b) foreveryg, K1A suchthat allb=0.

A natural example of state in thdV-algebra (I(X), O, O &), where we have
Lukasiewicz disjunction, is given by [21]:

Proposition 22. Let X be a finite set anp:{0,1}*~[0,1] an arbitrary probability
measure of0,1}*. Let the map p /AX) - [0,1] be defined, for eveny&{X), by

pr(s) = Z{s(x)p(x) /x0X}.
Then p is a state of the MV-algebta(X), 00, [ ).

We introduce the notions dflV-probability valuationof formulas and, then, o&-
probability valuationwhich enables us to obtain the truth-functionabfythe first
one.

Definition 23. An MV- probability valuatiorof F is any map:: F — [0,1] such that:
o ula)=1 for every tautology:,

o w(aB) = u(a) + u(p) &8 is a contradiction,

o u(e) = u(p) dfis logically equivalent tg.
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Let us observe that the only difference with Defom 7 is that the notions of
“tautology”, “contradiction” and “logically equiveht” are intended in the sense of
Definition 17.

Definition 24. An A-probability valuationis a structureX, u, py) where

e Ais anMV-algebra,
* Vi F—Ais a truth-functionaMV-valuation of formulas,
* p: A—[0,1]is a state oA.

The notion ofA-probability valuation is connected to that oneN¥-probability
valuation [13].

Proposition 25. Let (A, v, p) be an A-probability valuation and let us define
w:F—[0,1] by settingu(e) = pi(vi(a)) for everyaF. Thenu is an MV-probability
valuation. Conversely, let:F—[0,1] be any MV-probability valuation in F. Then an
MV-algebra A and an A-probability valuatigA, u, pr) exist such that(e)=p«(vi(a)) .

7. Fuzzy Statistical Inferential Bases

In order to create a database of past cases veyigientually vague properties in this
section we extend the definitions presented ini&eet. We refer to a generalization
of the basic notion dbrmal concept analysig], [16].

Definition 26. A fuzzy formal conteXti4] is a structure@b, AT, tr;) where:

» Ob is a finite set whose elements we @dljects
* AT is afinite set whose elements we edttibutes
o tr;: Obx AT - [0,1] is a fuzzy binary relation fror®b to AT.

The fuzzy relatiortr; connects any object with any attribute, i.e. thugtry(o, a) is
the truth degree of the claim “the objectatisfies the property”. As in Section 4,
we consider as set of objects the set of “paststam®d we distinguish two types of
attributes: we calbbservablahe attributes for which it is possible to discod@ectly
whether they are satisfied by the examined case, observablehe others. The
“actual case”, different from past cases, is cagrad “similar” to a class of past cases
if it satisfies their same observable propertie® Want to evaluate the probability
with which the actual case verifies a non obsee/@bbperty.

Definition 27. A (complet¢ fuzzy statistical inferential basis a structur&IB =(PC,
AT, OBS sim, tr¢, w) such that

» (PC, AT, try) is a fuzzy formal context,

* OBSis a subset OAT,

e sim PC- [0,1] is a fuzzy subset &fC,

» w:PC - N is a function calledveight function
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The setPC is that one ofpast casesand the mapr; is called fuzzy information
function. It provides the degree with which a past casesfgadi an attributeThe set
OBS is the (classical) subset of the observable atie®h and the mapim is
interpreted as the fuzzy set of past cases “sitmitathe actual one. The valwg(c)
gives the number of past cases whose represenimtivEhen, we set thiotal weight
of a fuzzy statistical inferential bas4B as

W(S)= Z{w(c)sim(c) / cOPC} .

If W(S)#0 then we say th& is consistent.

Differently from the total weight for &IB, this formula doesn’t yields the actual
number of past cases similar to the actual oneit hutthishes a “fuzzy” weight to the
whole inferential basis by giving a higher valuettiere are a lot of “similar” past
cases.

As in the previous section, we denote By(by F.,9 the set of formulas of a
multivalued propositional calculus whose set ofgmsitional variables i&T (or OBS
respectively). So we extertd to the whole sdt of formulas by setting
o tr(c, adp) =trdc, a) O tri(c, B,

o tri(c, ap) =tri(c, @) O tr(c, B ,

o tri(c, —a) = 1-tri(c, a) .

By referring to the notions introduced in Section vBe provide definitions of
valuations associated to a fuzzy statistical inféad basis.

Proposition 28. Every consistent fuzzy statistical inferential baSIB defines an A-
probability valuation(A, v, p) in F such that:

« A is the MV-algebrd/{PC), 0,0 &),

* Vi) is the fuzzy subset of the past cases satisfymfptmulaa, i.e.

vi{a)(c) =tri(c, a)
* pr A—[0,1] is the state on A defined, for ary/S(PC), as in Proposition 19, i.e.
pi(s) =Z{s(c)p(c) / cLPC} ,
where p is the probability of0,1}"°, defined by

p(c) = W(c sim c) )
w\SIB ;
By Proposition 22, any fuzzy statistical inferehtiasisSIB can be associated with
anMV-probability valuationu of the formulas, defined, for evesy by

(@)= pi(vs (@)= Z{tr; (c,a) p(c) /cUPC} .

In other words we have(a)= ) {w(c)sim (C%trf (c ,)a)/ cOPC} , and this value
w(siB,

represents the percentage of past cases similae #ctual case in whiehis verified.




-36 -

8. TheActual Caseand its Similar Past Cases

The indiscernibility relation in Definition 12, udefor “crisp” properties, isn’t
sufficient anymore for “vague” properties. Indedd,a classification process, given a
set of (eventually vague) propertidsand a property3UA, if tr(cy, o) =tr(cy, a) for
everyoald A\{ B} andtr(c,, §) = 0,8 andtr(c,, £) = 0,9 it is not reasonable to consider
the two case&, andc, not “analogous”. Therefore, it is necessary to talte account
an extension of the relation such that it resytisrapriate to a classification handling
“vague” properties and in order to consider “simiilavo cases whit respect to these
properties. As an immediate consequence of Praposit we obtain the following
one whered and O denotes the Lukasiewicz conjunction and disjumgtio
respectively.

Proposition 30. LetSIB be a fuzzy statistical inferential basis and(kt v, py) be the
A-probability valuation associated to it. Then, fany subset B of AT, the fuzzy
relation E: PCxPC - [0,1], defined by setting

E(C1,C2) = Uare( Vi(@)(Cr) < 0 W(0)(C2)) )

is al- fuzzy similarity.

Since the fuzzy se#(a): PC- [0,1] of past cases satisfying the propertig defined
by vi(e)(c)=tr¢(c, «), we can rewrite (4) as

E(C1,C2) = O oas( tri(Cy, @) « o trcy, @) ,

The valueE(c,,c,) furnishes the “degree of similarity” between th past cases
c; andc, in SIB. From the logical point of view, it is the valuati of the claim
“every property satisfied by is satisfied by, and vice-versa

As usual, a similarity can be interpreted in teohfizzy similarity classe®ne for
each element of the universe. In our situation,efeery case, we can consider a
fuzzy subsesim;: PC- [0,1] as the fuzzy class of the past cases “similarc,tdy
settingsim(c) = E(c,g ). In particular, we have to identify the past asimilar to
the actual one. Let us recall that by “actual cage’intend a case different from past
cases in which the only available information iattbne expressed by the &gt in
the language of “observable” properties. The didiniof “actual case” in the fuzzy
situation is a generalization of that one in tHegcase.

Definition 30. We call fuzzy actual caseany mapa..OBS-[0,1] from the set of
observable properties to the interval [0,1]. Wd pace of information about.any

subset of,, i.e. any partial map: OBS - [0,1] such thag. is an extension of. We

say thafT is completdf T=a. .

We denote the actual case &yor by the family{a., a[(a)} ,ooss indifferently. The
last notation is more useful in describing the riefgial process, where we identify the
actual case with the “information” about its obsdite properties, collected by a
query process. We extend the fuzzy information fienctr; and the similarityE,
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given in (3)to the actual case by settitrga,, a)= a.(a) for everyallOBS and, given
a piece of informatio abouta,, we set

Er(c,ac)= Uampomm ([tr(C, @) <o tr(a, a) ) -

So, it results that the past casis similar to the actual case.agiven the information
T, with degree Kc,a.). If Tis complete then we writé(c,a.) instead oE+(c,a.).

Definition 31. Let SIB be a fuzzy statistical inferential basis. We sat th piece of
information T is consistent with SIBf there existscOPC such thatsim(c)z0 and

If Tis consistent witlSIB, then in our database there is at least a pasiccsisglar to
a. according to the available informatidn

9. Fuzzy Statistical Inferential Bases Induced by a Piece of
I nformation and the Step-by-Step Inferential Process

Given a fuzzy statistical inferential basséB and a piece of informatiom on the
actual case., we obtain a new fuzzy statistical inferentialib&B(T) from SIB.

Definition 32. Let SIB be a consistent fuzzy statistical inferential bamidT be a
piece of information om.. We callfuzzy statistical inferential basis induced by T in
SIB the structureSIB(T)=(PC, AT, OBS, sim tr;, w), wheresim; is defined by

settingsimr(c) = sim(c) O E+(c, &) .

Let us observe thaim; can be regarded as the fuzzy class of the pasiscas
“similar” to a. given the informatio. Then, in accordance with Proposition 25 and
given the A-probability valuation &, v, p) associated t&IB, the induced fuzzy
statistical inferential basiSIB(T) defines anA-probability valuation &, v{, p' )
where:

« Ais theMV-algebra J(PC), 0, 0 &) ,
« v : F- Ais anMV-valuation of the formulas defined by
V' (@)(c) = simr(c) O vi(a)(c) = sim(c) O Ex(c, a) O tri(c, a) ,

i.e.vi'(a) is the fuzzy set of the past cases simila{@iven the informatio) and
verifying the formulax ,
« pi: A—[0,1] is the state oA defined by setting, for arsi] C(PC),

pr'(9)= Z{s(c) pr(c) / cOPC} ,
wherepy is the probability 0§ 0,1} °© given by
pr() = W(c)sim, () = w(c)sim, (c)

w(siB, (1)) 3 {w(x)sim, (x)/ x0 PC} .
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So, give a fuzzy statistical inferential ba§it and a piece of informatiom, we
obtainan MV-probability valuationut of the formulas, defined, for every formuta

by

(@)= pi'(vi' () = Z{[ sime(c) 0 (@)(9)] pr(c) / cLPC} . 4
Let us observe that we obtain
L{a)= > {w(c)sim, (c)|sim, ()0 tr, (c,a)]/ cO PC} , )

> {w(c)sim, (c)/ cOPC}

and it represents the percentage of the past vaségng a among the cases BIB
considered similar ta. according to the available informatidn

Now, let us imagine the expert system has to etalile probability that an actual
casea, verifies a non observable formyla Let us suppose that in thatial fuzzy
statistical inferential basiSIB, the mapsim is constantly equal to 1, i.e. we are
considering all the past cases “similar” to theuatbne. The information om can be
obtained by a query-strategy. Let us denoteahy..,c,, a sequence of appropriate
gueries about observable propertiesofThen, we sety=[ and, given a new query
a., we setT, =T, 0{(a, A), whereA; J[0,1] is the degree with which the actual case
verifies the propertyo;. Consequently, we obtain a sequence of correspgrfdizzy
inferential statistical basisSIB(T;)}i-1 ... n.At every step we have the probability that
a. satisfiesf given the available information

Definition 33 Let SIB be an initial fuzzy statistical inferential basied S be a
formula inF. Let T,, be the available information anp obtained by a sequence rof
qgueries. Then we caprobability that a satisfiesf given the information ,J the
probability of in the fuzzy statistical inferential ba$#B(T,) induced byT,in SIB.

More precisely, the step-by-step inferential pradesanalogous to that in Section 7:
1. SetTy = & andSIB = SIB(Q) = SIB.
2. GivenT, andS=5(T,), after the queryy.;and the answety,,
PUtTye1=Ty O{(aks1, Asa))} @nd  SIBes= SIB(Tir1).
3. If the information is Sufficient or completegoto 4, otherwise goto 2.
4. Setu(B) = um«1(P) as defined in (4).
5. If Ty+1is inconsistent witts1B..1 then the process iddiled’.

Let us notice that if the information oa. is complete, therl,=a. and the
inferential process terminates. In such a casb)irsiimy(c)=E(c,a;) and (5) represents
the percentage of the past cases simila. teatisfyings in the past.

Let us observe that the proposed process is alempmetable in the framework of
case-based reasoningee for example [15]). Indeed, if we interpret #et of non
observable attribute&T-OBSas the set of probable “solutions” and the vaiye, a),
with alJAT-OBS as the “validity degree” of the solutian for the case collected in
the database, the final valpe(a) represents a “validity degree” of the solutigrior



-39 -

the actual case. In such a cas) is the percentage of the past cases similag tor
which ¢ was a “good solution”. Our approach is closectse-based reasoning
systems since we make a prediction on a new casb4$srving precedent cases. On
the other hand, the prediction, probabilistic inune, is obviously different from that
one used in other approaches, generally possibilishature [6].

10. Futureworksand open questions

The researches related with the sketched expettragsare at an initial state and
several questions are open. The main one is tostedt an idea in some concrete
cases. To this regard, observe that there is figwt in realizing a suitable program
in any relational database management system3pe@P?

A second question is related with the difficultefsinterpreting the probabilistic
valuation of a formula irBIB(T) as a conditioned probability i8I& (as we have
made for the crisp case in Section 6). In fact,cae define theonditioned stateas
in the classical probability theory, by settipgs/t) = p(sOt)/ p«(t) and, due to the
associativity of(l], p; satisfies thdteration rule of the classical conditioning for a
probability, i.e. pi(s/tn ov)= pi(sn gt/v) / pi(t/v) . This is a basic property that it is useful
in the inferential process and for a possible immatation of the expert system.
Unfortunately,p; doesn't result a state, sinCeis not distributive with respect ta.
So, we might look for an adequate definition oftestasuch that the corresponding
conditioned state verifies tligration rule

Another question is related to the kind of theilatde information on the actual
case. Indeed, it should be natural to admit thiatittformation can be expressed by
intervals, i.eT ={a., |(a)} wherel(a) is a closed interval in [0,1]. In fact, it is nal
to admit that the truth value @f cannot be given in a precise way and that the truth
value of a is approximate by an intervd(a). The intended meaning is that the
precise truth value af in a. is inl(a). In other words we can refer to interval-valued
fuzzy subsets to represent the extension of a vagedicate. If we admit such a
possibility, then it is necessary to find an anal®@®f Proposition Valverde ... ?
enabling us to define an “interval-valued” simitgrby considering interval-valued
fuzzy subsets.

Finally, a basic question is related with the skedar an optimal strategy in the
choice of the queries in the fuzzy framework. Irdjeeis not clear if also in the case
of the vague properties, a good strategy is ohdaiyeminimizing the expected value
of the entropy.
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